Экология
ЭКОЛОГИЯ.КОНСТПЕКТ ЛЕКЦИЙ

Оглавление


Спасём мир


Голосование
Вы знаете вообще что-нибудь по этой тематике?
в общих чертах
ничего не знаю
это - моя жизнь!


Энергия в какой-либо форме всегда пропорциональна количеству той формы энергии, в которую она переходит. "Потребленная энергия" не расходуется, она только переводится из состояния, в котором ее легко превратить в работу, в состояние с малой возможностью использования (бензин в баке автомобиля действительно расходуется, но энергия, содержащаяся в нем, не исчезает, а превращается в формы, уже неприродные для использования в автомобиле).

Так, попав на Землю, лучистая энергия солнца стремится превратиться в тепловую. Лишь очень небольшая часть световой энергии, поглощенной зелеными растениями, превращается в потенциальную энергию пищи, большая же ее часть превращается в тепло, покидающее затем и растение, и экосистему, и биосферу. Весь остальной живой мир получает необходимую потенциальную химическую энергию из органических веществ, созданных фотосинтезирующими растениями или хемосинтезирующими микроорганизмами. Например, животные поглощают химическую потенциальную энергию пищи и большую ее часть превращают в тепло, а меньшую вновь переводят в химическую потенциальную энергию заново синтезируемой протоплазмы. На каждом этапе передачи энергии от одного организма к другому значительная часть ее превращается в тепло, рассеивается в соответствии со вторым законом термодинамики - законом энтропии.

Мы проследили два пути превращения кинетической энергии солнечного света. Первый путь - превращения в энергию теплового излучения. И второй - путь поглощения солнечного света фотосинтезирующими организмами с продуцированием органического вещества. В каждом случае попытаемся понять, какую форму энергии, концентрированную или рассеянную, затрагивает превращение, на каких этапах превращение энергии происходит количественно, на каких нет:

Таким образом, все типы экосистем регулируются теми же основными законами, которые управляют и неживыми системами. Но есть и различия.

Еще в 1935 г. советский ученый Э.С.Бауэр в своей "Теоретической биологии" сформулировал три основные особенности живых систем.

1. Способность к самопроизвольному, без воздействия окружающей среды, изменению состояния.
2. Противодействие внешним силам, приводящее к изменению первоначального состояния окружающей среды.
3. Постоянная работа против уравновешивания с окружающей средой.

Первые две особенности встречаются и у других систем, а вот третья является отличительным признаком живых. Поэтому Бауэр назвал ее "всеобщим законом биологии", который имеет ясный термодинамический смысл - как в неживых системах устойчиво их равновесное состояние, так в живых устойчиво неравновесное.

Шредингер (1945 г.) тоже считает особенностью живых систем их неуравновешенность с окружающей средой, которая поддерживается непрерывным обменом открытой живой системы с окружающий средой едой, питьем, дыханием и т.д. Но обмен сам по себе ничего дать не может. Любой атом азота, кислорода, серы и т.п. также хорош, как и любой другой такого же рода. Может быть, целью обмена является поглощение энергии. Но ведь в зрелом организме содержание материи также постоянно, как и содержание энергии поэтому замена одного джоуля другим ничего не меняет. Более того, потребление пищи (энергии) взрослым организмом, как правило, значительно превышает потребности молодого, которому нужно интенсивно синтезировать собственную протоплазму. Значит, постоянный приток пищи (энергии) необходим живым системам не только для накопления энергии на черный день, либо для построения организма, т.е. для синтеза органических соединений, характерных для данного вида, и главным образом не для этого. Чтобы разобраться в этой проблеме рассмотрим, а как ведут себя неживые неравновесные системы. Если неживую неуравновешенную с окружающей средой систему изолировать, то всякое движение в ней скоро прекратится. В результате трения, теплопроводности, химических реакций и других самопроизвольных процессов потенциалы выравняются, система в целом угаснет и превратится в инертную массу материи, находящуюся в состоянии термодинамического равновесия, то есть максимальной энтропии. (Хороший пример - растворение кристаллика поваренной соли. На последнем примере удобно показать, что происходит с энтропией в самопроизвольных процессах. Кристаллик - упорядоченная ионная структура, где у каждого иона было определенное место; при растворении эта структура нарушилась, произошло разупорядочение структуры, энтропия увеличилась).

Таким образом, все, что происходит в природе, ведет к увеличению энтропии в той части мира, где это происходит, включая живые системы. Последние тоже непрерывно увеличивают свою энтропию, то есть производят положительную энтропию, и приближаются к опасному состоянию максимальной энтропии - смерти. Следовательно, неравновесное состояние живых систем (которые представляют собой чрезвычайно маловероятную структуру, обладающую очень низкой энтропией) поддерживается за счет извлечения ими из окружающей среды отрицательной энтропии - негоэнтропии. Назначение обмена - освободиться от производимой положительной энтропии и извлечь отрицательную. Но чем выше энтропия, тем больше беспорядок, и наоборот. Поэтому извлечение негоэнтропии есть "извлечение порядка", повышение упорядоченности системы, организма.

Есть два различных механизма, производящих упорядоченные явления: статический, создающий порядок из беспорядка; и механизм, создающий порядок из порядка низшего уровня. Закон сохранения энергии ничего не дает для их объяснения. Видимо, его надо искать на основе второго закона. Известно, что высшие животные питаются хорошо упорядоченными органическими соединениями. Использовав упорядоченность этих продуктов, животные возвращают в окружающую среду вещества в очень деградировавшей, неупорядоченной форме, там они усваиваются растениями. Для последних же мощным средством выработки отрицательной энтропии является солнечный свет, с помощью которого в хлорофилле происходит повышение упорядоченности деградировавших веществ - фотосинтез, и цикл повторяется. Это единственный на Земле естественный, самопроизвольный процесс, в котором энтропия уменьшается - за счет затраты даровой солнечной энергии. В соответствии со вторым законом, кинетическая энергия света превращается в потенциальную энергию связи органических соединений не количественно. Да, коэффициент этого перехода много меньше 100 %. Но энергия света достается даром! Нам все равно, с каким КПД ее будут расходовать растения, пусть он будет даже очень мал. Главное, растения и все "живое" обладают тайнами механизмов концентрирования и диссипирования энергии.

 
Цитата
...« Рис. 1. Спектр уровней организации. Сообщество, популяция, организм, орган, клетка и ген - основные уровни организации жизни; на рис. 1. они расположены в иерархическом порядке - от крупных си»...
подробнее
 

Текст о экологии!!




Биография автора

Березина А.Н.

Березина Алла Николаевна (18.05.1954), доцент кафедры химических наук. Уроженка Смоленской области. В 1971 году закончила МОУ СОШ № 11 Смоленска. В 1972 году поступила в Смо...
далее



Самые просматриваемые


Дипломы этой тематики


Отзывы
Автор: катя
полезная...
Автор: Екатерина
Огромнейшее спасибо!!! Очень помогло при подготовк...


Наука России - Наше будущее!